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We analyze the Kuramoto model of phase oscillators with natural frequencies distributed according to a
unimodal asymmetric function g���. It is obtained that besides a second-, also a first-order phase transition can
appear if the distribution of natural frequencies possesses a sufficiently large flat section. It is derived analyti-
cally that for the first-order transitions the characteristic exponents describing the order parameter and syn-
chronizing frequency near the critical point are equal to those for the order parameter in the corresponding
symmetric case. Stability analysis of the incoherent phase shows that the synchronizing frequency at the onset
of synchronization equals the perturbation rotation velocity at the border of stability. The analytic and numeri-
cal results are in agreement with numerical simulations.
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I. INTRODUCTION

Synchronization is a phenomenon of coherent behavior of
the units of many systems encountered in physics, chemistry,
and biology. The Kuramoto model �1,2� is the most success-
ful model describing cooperative phenomena of an infinite
number of interacting units represented by phase oscillators.
A detailed review of the model and its extensions and appli-
cations was published recently �3�. In short, the original
Kuramoto model describes synchronization of an infinite
number of phase oscillators, interacting with equal all-to-all
pairwise coupling. The synchronization is described by an
order parameter which is vanishing when the coupling is
weak and becomes nonzero when the interaction strength
exceeds some critical value.

Here we report on the stationary solution for the Kura-
moto model with asymmetric unimodal �single-peaked� dis-
tribution function for the natural frequencies of the indi-
vidual oscillators. The asymmetric case is more natural
because any imperfection, however small, can destroy the
ideal symmetry. The case with asymmetric distribution has
obtained little attention. It was first examined by Sakaguchi
and Kuramoto �4� in a more general setting for the interac-
tion between oscillators. They discuss the case of second-
order phase transition to coherence and obtain the same char-
acteristic exponents describing the order parameter as in the
symmetric case. We are aware of few publications dealing
with the asymmetric distribution function for the natural fre-
quencies. The onset of synchronization was studied for the
distribution function with exponential tails �5� and for the
bimodal distribution exemplified by two � functions with
nonequal strengths �6,7�. Ermentrout �8� considered the stage
when all oscillators become synchronized for a piecewise
uniform asymmetric distribution consisting of two steps. The
case of a first-order phase transition has not been discussed,

and therefore we focus our attention on this particular case.
For symmetric distributions, first- and second-order phase
transitions arise depending on whether the top of the distri-
bution function is flat or not �5,9,10�. The asymmetric distri-
bution also supports first- and second-order transitions, but
provides some additional features.

In the following we begin with a description of the model
and derive the self-consistent equations for determination of
the order parameter. The equations are solved numerically
for several examples of asymmetric distribution functions.
The results are further supported by stability analysis of the
incoherent phase and additionally by numerical solutions of
the equations of motion for the interacting oscillators. We
conclude with a discussion and an appendix providing proof
of the independence of the characteristic exponents for the
first-order transitions on the existence of symmetry in the
distribution function.

II. MODEL

The Kuramoto model describes the behavior of a large
number N of phase oscillators with all-to-all coupling. The

phase of every oscillator �i
ˆ evolves according to the equation

�̂i = �̂i +
K

N
�
j=1

N

sin��̂ j − �̂i� , �1�

where the coupling among all pairs of oscillators is equal to
K /N. Here we assume that the natural frequencies of the
oscillators �̂i are distributed according to some asymmetric
unimodal distribution function ĝ���, which is nondecreasing
on the left from the unique maximum and nonincreasing on
the right side. Without any loss in the generality, the maxi-
mum can be located at �=0. For convenience we shall as-
sume, without actually making any restriction, that negative
frequencies are more abundant and therefore the mean �̄
=�d� ĝ�����0 is negative.

Following Kuramoto, the degree of coherence of the
phases can be expressed through the order parameter
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rei�̂ =
1

N
�
j=1

N

ei�̂j . �2�

The synchronization has taken place if the amplitude r has a
nonzero value, which happens for couplings stronger than
some critical value. Generally, the amplitude and the phase
of the order parameter are functions of time, but we shall
look for stationary solutions with constant amplitude r�t�=r

and phase �̂�t�, which progresses uniformly in time. Let the
phase velocity of the order parameter be equal to some fre-
quency −�0�0. It is a quantity we will have to determine
later. When ĝ��� is symmetric, there is no difference be-
tween �0, �̄ and the location of the maximum at �=0. In a
reference frame related to oscillators with frequency −�0, the

phases of the oscillators are �i= �̂i+�0t and the phase corre-

sponding to the order parameter is �= �̂+�0t. In the same
frame after an appropriate time shift one can take that �=0
and the order parameter is identified with its amplitude only:

rei� = r =
1

N
�
j=1

N

ei�j . �3�

Then the coupling in Eq. �1� can be expressed through r as

K

N
�
j=1

N

sin��̂ j − �̂i� =
K

N
�
j=1

N

sin�� j − �i� = K Im� 1

N
�
j=1

N

ei��j−�i��
= Kr sin�� − �i� . �4�

Now the evolution of the phase of each oscillator depends on
its coupling with the mean phase

�̇i = �i + Kr sin�� − �i� = �i − Kr sin �i, �5�

where the new frequencies are �i= �̂i+�0. It is simpler to
work in the new reference frame, where instead of the dis-
tribution ĝ��� the shifted distribution g���= ĝ��−�0� will be
used.

For infinite population N→�, the oscillators can be de-
scribed with the probability density function ��� ,� , t� of os-
cillators with intrinsic frequency � and phase � at the mo-
ment t. The density evolves according to the continuity
equation

��

�t
+

���v�
��

=
��

�t
+

����� − Kr sin ���
��

= 0. �6�

Then the order parameter �3� is defined by an integral:

r =	 	 d� d� ei�g������,�,t� . �7�

The assumption that the order parameter r is real implies that

r =	 	 d� d� cos �g������,�,t� ,

0 =	 	 d� d� sin �g������,�,t� . �8�

The second equation could be identified as the phase balance
equation because it ensures vanishing mean phase �=0. The
density � is stationary if �v=const �Eq. �6��. One possibility
is v=0, which means that the phase of oscillators obeying
that condition is

� = arcsin
 �

Kr
� . �9�

These oscillators are locked to the mean phase and determine
the interval of synchronized oscillators. In the original Kura-
moto model as well as in the asymmetric case considered
here, only such oscillators contribute to the order parameter.
The product of the coupling and the order parameter, �=Kr,
determines the half-width of the synchronized cluster, be-
cause only solutions with ���	
 /2 are stable �3,11�.

Oscillators with frequencies outside the interval −���
�� are out of synchrony with the mean phase. Their station-
ary distribution is �v=C���=const, or

���,�� =
C���

�� − � sin ��
. �10�

The constant C���=�2−�2 /2
 is determined from the nor-
malization condition �d� ��� ,��=1. Considering the oscil-
lators with ����� one remarks �Eq. �10�� that their phases
are symmetrically distributed around the phases �=
 /2 and
�=3
 /2 for 0���
 and 
���2
, respectively. Because
cos � is an odd function with respect to the middle points of
these two intervals, it follows that the contribution of such
oscillators to the order parameter is zero,

	
0

2


d�
C���cos �

�� − � sin ��
= 0. �11�

The distribution of locked oscillators is described by the
delta function ��� ,��=�(�−arcsin�� /��), and the order pa-
rameter is determined by

r =	 	 d� d� cos �g����„� − arcsin��/��…

= 	
−�

�

d� g���1 − 
�

�
�2

. �12�

The contribution of all oscillators with some frequency
��� to the phase balance is

	
0

2


d�
C���sin �

�� − � sin ��
=

1

�
�� − �2 − �2� . �13�

Similarly, the contribution of the oscillators with frequency
��−� is ��+�2−�2� /�. The total contribution of all drift-
ing oscillators �those with ������ to the phase balance is

LASKO BASNARKOV AND VIKTOR URUMOV PHYSICAL REVIEW E 78, 011113 �2008�

011113-2



I1 = 	
−�

−�

d� g���
1

�
�� + �2 − �2� + 	

�

�

d� g���
1

�
��

− �2 − �2� . �14�

Expressions �11� and �13� can be found also in �12�.
The influence of the locked oscillators to the phase bal-

ance is

I2 =	 	 d� d� sin �g����„� − arcsin��/��…

= 	
−�

�

d� g���
�

�
. �15�

Combining the integrals in Eqs. �14� and �15� the phase bal-
ance equation reads

0 = 	
−�

�

d� g���� + 	
−�

−�

d� g����2 − �2

− 	
�

�

d� g����2 − �2, �16�

where the multiplier 1 /� has been canceled out. The first
integral is

	
−�

�

d� g���� = �̄ + �0, �17�

and the phase balance equation is reduced to

0 = �̄ + �0 + 	
−�

−�

d� g����2 − �2 − 	
�

�

d� g����2 − �2.

�18�

This equation together with Eq. �12� represents a closed sys-
tem for determination of the dependence on the coupling
strength K of the order parameter r and the shift of the cen-
tral frequency �0 around which the coherent oscillators be-
come organized.

In studies of phase transitions the first thing to be found is
the critical point, which in the Kuramoto model is deter-
mined by the critical coupling Kc. For the second-order
phase transitions it can be calculated from Eq. �12� in the
limit �=Kr→0. Then it is expressed through the critical syn-
chronizing frequency Kc=2 / �
g�0��=2 / �
ĝ�−�c��. To ob-
tain �c, the phase balance Eq. �18� should be taken in the
limit �→0, which means the square root can be expressed
with its power-series expansion. Keeping the dominant terms
in the approximate equation obtained from the expansion, the
equation for the critical synchronization frequency �c reads

0 = 	
0

�

d�
g��� − g�− ��

�
= 	

0

�

d�
ĝ�� − �c� − ĝ�− � − �c�

�
.

�19�

After the calculation of the critical synchronizing frequency
�c for some particular distribution ĝ���, we can easily deter-
mine the critical coupling Kc=2 / �
ĝ�−�c��. Applying Eq.
�19� one can find that �c is in agreement with the corre-

sponding limiting value for the frequency obtained from the
numerical solution of Eqs. �12� and �18�, or formally �0
→�c, when K→Kc+0. Since we assume that the distribu-
tion function is a normalized and well-behaved function pos-
sessing a sufficient number of derivatives, the convergence
of the integral in �19� is assured at both limits.

III. EXAMPLES

As an illustration of the theory, we show in Fig. 1 solu-
tions of the equation for the order parameter �12� and the
phase balance equation �18�. To continue with the analytical
treatment of the model as far as possible, we have taken
distribution functions for which the integrals appearing in
Eqs. �12� and �18� can be expressed analytically. One such
example is provided by the triangular distribution function,
defined by a piecewise linear function:

ĝt��� = �ĝ�0� − a� , 0 	 � 	 ĝ�0�/a ,

ĝ�0� + b� , − ĝ�0�/b 	 � � 0,
� �20�

where a and b are positive parameters and ĝ�0� is obtained
from normalization condition �d� ĝ���=1. It is unimodal
with maximum at �=0. The dependence of the order param-
eter on the coupling strength is depicted in Fig. 1�a�. There is
a second-order phase transition to synchronization as is the
case with symmetric distributions �3�. However, the critical
value of the coupling is different from the symmetric case
when Kc=2 / �
ĝ�0��. It is larger and it corresponds to some
value Kc=2 / �
ĝ�−�c��, where the critical synchronizing fre-
quency �c=�0�Kc� is a solution of the phase balance equa-
tion �18� in the limiting case �→0 �or r→0�. It means that
the seed of the cluster of synchronization does not appear at
the top or at the mean of the distribution of natural frequen-
cies, which happens for the symmetric distributions, when
these two points coincide, but somewhere in between. At the
same time, with the change of the coupling strength, the
synchronizing frequency �0�K� changes as well �Fig. 1�b��.

We present results for one additional distribution, a piece-
wise constant, which might be called “olympic.” It is defined
as follows:

ĝo��� = �a , − 3/2 	 � 	 − 1/2,

ĝ�0� , − 1/2 � � 	 1/2,

b , 1/2 � � 	 3/2,
� �21�

where again a and b are positive parameters and ĝ�0� is
constrained by normalization condition. We found a first-
order phase transition for the olympic distribution, because at
the critical coupling strength a macroscopic part of the oscil-
lators from the highest plateau synchronize simultaneously.
The transition to synchronization is of first order only when
the synchronization seed is generated at some flat portion of
the distribution, assuming that there is such a flat section. For
example, for a distribution consisting of a wide nonconstant
linear part and a thin adjacent constant part with height equal
to the maximum of the linear segment, there is a second-
order transition, because the synchronized seed appears at
the nonconstant linear piece of the distribution. Flatness at
the top of the distribution function appears to be a necessary,
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but not sufficient condition for the existence of a first-order
transition when the distribution is not symmetric.

Graphical illustrations of the numerical results for some
particular choice of the parameters for the olympic distribu-
tion are provided in Fig. 1. As can be seen �Fig. 1�d��, with
the increase of the coupling strength the frequency shift �0
can switch the direction of change. Depending on the par-

ticular case, the changes in �0�K�, although not for the same
interval of changes for the coupling parameter K, vary
roughly between 10% and 20%. For larger variations of K,
the variations in �0�K� could more than double. For infinite
coupling strength the synchronizing frequency equals the
mean frequency �̄, as can be deduced from the phase balance
equation �18� for �=Kr→�.

In addition we have analyzed the scaling laws for the
order parameter and the synchronizing frequency near the
critical point at K=Kc. For the symmetric case it is known
�5� that

r � �K − Kc�1/m, �22�

where m�0 is a parameter describing the power-law decay
of the distribution function in the vicinity of its maximum. In
the case of first-order transition, it was found �9,10� that

�r − rc� � �K − Kc�2/�2m+3�, �23�

where m is a parameter characterizing the dominant power-
law term describing the tails of the symmetric distribution
functions outside and in the immediate vicinity of the flat
region.

For the second-order transition, we have verified from
numerical evidence for the triangular distribution that the
square-root law holds �4�,

r � �K − Kc�1/2, �24�

with an accuracy 0.5�0.01. That this is the case can be
shown by expanding Eqs. �12� and �18� in the limit when
�1. First one should note that the distribution centered at
the synchronizing frequency for K=Kc is g���= ĝ��−�c�,
and for K�Kc it becomes g��−���= ĝ��−�c−��� because
of the drift of synchronizing frequency ��=�0−�c. Power-
series expansion of the distribution for small �� is

g�� − ��� � g�0� + g��0��� − ��� +
g��0�

2
�� − ���2.

�25�

Then the equation for the order parameter, Eq. �12�, is

r = 	
−�

�

d� g�� − ���1 − 
�

�
�2

� �g�0� − g��0����	
−�

�

d�1 − 
�

�
�2

+
g��0�

2
	

−�

�

d� �21 − 
�

�
�2

, �26�

where only the dominant terms are kept. Near the critical
point the synchronizing frequency behaves as

�0 = �c + c�2 + O���4, �27�

as can be deduced from the phase balance equation �18� for
�→0. Then using ���cK2r2 in �26� the order parameter for
coupling little stronger than the critical is

(b)

(a)

(c)

(d)

FIG. 1. �Color online� Order parameter r and frequency shift �0

versus coupling constant K for distributions considered in the text:
�a�, �b� triangular �a=3, b=1, ĝ�0�=3 /2�, �c�, �d� olympic
�a=0.25, b=0.2, ĝ�0�=0.55�. The meaning of the parameters is ex-
plained in the text. Different symbols denote different results:
squares, numerical solution of the system of transcendental equa-
tions �12� and �18�; triangles, asymptotic relationships �29� and
�30�; circles, numerical solutions of the equations of motion �5�.
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r � 16�K − Kc�

Kc

4�8cĝ��− �c� − ĝ��− �c��
. �28�

This result is also given in �4� for a more general coupling
function between oscillators j and i, sin�� j −�i+��, where �
is a parameter.

For example, for the triangular distribution illustrated in
Figs. 1�a� and 1�b�, one finds

�0�K� �
6

18
+

16
�K − Kc�
27

�29�

and

r �
64


243
36
 ln 2K − Kc, �30�

where Kc=36 /4
. In Figs. 1�a� and 1�b�, the asymptotic
relations �29� and �30� for the triangular distribution are
compared to the numerical solutions of Eqs. �12� and �18�
and to the results found from simulations. The agreement is
quite adequate. It was found numerically that the same uni-
versal square-root power law holds for all other examples we
have examined �piecewise parabolic and piecewise quartic
distribution functions and g��� consisting of two different
Lorentzian distribution functions joined continuously�. The
second case is interesting because for the corresponding
symmetric case the exponent is 1 /4.

One may conclude that the swarm of synchronized oscil-
lators appears by Andronov-Hopf bifurcation at the critical
frequency �c which is located between �̄�0 and the loca-
tion of the maximum of the distribution function at �=0. We
repeat that in the adopted notation, the synchronization oc-
curs at the frequency −�0�K�, but for convenience, the dis-
cussion, analytic expressions, and plots are given for �0�K�.
As the coupling constant is increased, the frequency of the
synchronized oscillators generally shifts toward their mean
frequency where, for unimodal distributions, there are more
oscillators for recruitment into the synchronized phase. For
the olympic distribution the tendency at the beginning is op-
posite, presumably, until all the oscillators from the most
abundant central flat region are exhausted and included in the
synchronized set, when their synchronized frequency starts
to shift toward the mean frequency.

When the phase transition is of first order, for the critical
value of the coupling Kc there is an interval of solutions for
the order parameter, stretching from zero to some value rc. It
implies that the half-width of the synchronizing interval ex-
tends from zero to �c=Kcrc. To different widths of the syn-
chronizing cluster 2� correspond different synchronizing fre-
quencies �0 as required by the phase balance condition �18�.
From Eq. �19� one can calculate �c�, which is related to the
vanishing width of the synchronizing interval �→0. The
limiting value of �0 when the coupling decreases toward Kc
is the synchronizing frequency �c� when the cluster has a
half-width �c. Thus, for the same value of the coupling Kc,
there is an interval of solutions ��c� ,�c�� for the synchroniz-
ing frequency as is the case for the order parameter when all
values in the interval �0,rc� are acceptable solutions.

We also found numerically that when the distribution is
weakly asymmetric, a→b in �20�, the frequency shift disap-
pears, �c→0, in accordance to the relationship �c��a−b�.
This can be deduced from the equations by expanding to first
order in the power of a small parameter characterizing the
asymmetry of the distribution function—for example, the
difference a−b.

As additional examples with a first-order phase transition
we examined three distribution functions with flat central
part and constant, linear, or quadratic tails. The characteristic
exponents are close to those in the symmetric case, but the
accuracy obtained is lower because it depends on the deter-
mination of the critical point �rc ,Kc� which is found only
numerically. In the Appendix we show analytically that the
scaling laws for the first-order transition for asymmetric
functions in the neighborhood of �rc ,Kc� are actually exactly
the same as for the corresponding symmetric cases and that
the synchronization frequency shift is described by the same
power law

��0�K� − �0�Kc�� � �K − Kc�2/�2m+3�. �31�

IV. STABILITY ANALYSIS OF THE INCOHERENT
PHASE

An alternative way for obtaining the critical coupling is
provided by stability analysis of the Kuramoto model. A rig-
orous study of the linear stability of the incoherent phase for
the symmetric case of the Kuramoto model was achieved by
Mirollo and Strogatz �13�. Studies of the stability led to the
conclusion that for couplings weaker than the critical, the
incoherent phase for the original, noiseless model is neutrally
stable, but when noise is added it becomes linearly stable. It
was found that for symmetric distributions, the coupling at
which the incoherence becomes unstable is exactly the same
with the value obtained from the condition of appearance of
nonzero order parameter—that is, Kc=2 / �
ĝ�0��. The proce-
dure does not depend on the symmetry of distributions; it can
be applied for asymmetric distribution functions as well, and
we shall present its noisy version. The governing equations
for the oscillator phases in the Kuramoto model with noise
are

�̇̂i = �̂i + �i +
K

N
�
j=1

N

sin��̂ j − �̂i� , �32�

where the noise variables �i�t� are characterized with zero
mean and a constant D:

��i�t�� = 0, ��i�t�� j�t��� = 2D��t − t���ij . �33�

The averaging is performed over different realizations of the
noise. From now on in this section the carets over the phases
and frequencies are dropped for convenience.

In the thermodynamic limit N→�, the distribution
��� ,� , t� of the oscillators with frequency � and phase � at
time t evolves according to the Fokker-Planck equation

��

�t
= D

�2�

��2 −
�

��
��v� , �34�

with phase velocity
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v��,�,t� = � + Kr sin�� − �� . �35�

The distribution of the phases at incoherence is the constant
function �=1 /2
, and to examine its linear stability one
should make a small perturbation

� =
1

2

+ ���,��e�t, �36�

where ��� ,�� is a 2
-periodic function of �. In addition,
due to the normalization condition imposed on ��� ,� , t�, we
have

	
−





d� ���,�� = 0. �37�

The exponent � is generally complex and its real part � is
the growth rate, determining stability, and the imaginary part
� is the rotation velocity of the perturbation. After Fourier
expansion of the perturbation

���,�� = �
n=−�

�

bn���ein�, �38�

an infinite set of equations for the Fourier coefficients fol-
lows �3�:

�� + in� + n2D�bn =
K

2
��n,−1 + �n,1�	

−�

�

d� bn���ĝ��� .

�39�

One should note that the original distribution of natural fre-
quencies ĝ��� is used, because for the incoherent phase there
is no some special reference frame. In the last equation, Kro-
necker deltas imply that to higher-order modes correspond �
with negative real part −n2D. The cases n= �1 should be
treated separately. The integral in the last equation is substi-
tuted by a constant, and the equation is solved for b�1, which
are subsequently used to eliminate the introduced constant in
a self-consistent manner �14�. Then the characteristic expo-
nents � for the first harmonics b�1 can be calculated from

K

2
	

−�

�

d�
ĝ���

� + D + i�
= 1. �40�

Expressing � through its real and imaginary parts, �=�+ i�,
and separation of the real and imaginary parts of the integral
leads to the pair of equations

K

2
	

−�

�

d�
�� + D�ĝ���

�� + D�2 + �� + ��2 = 1,

K

2
	

−�

�

d�
�� + ��ĝ���

�� + D�2 + �� + ��2 = 0. �41�

From the second equation one can extract the rotation veloc-
ity � at vanishing noise D→0 and at the border of stability
�→0. For that purpose the function appearing in the second
integral can be presented by its power series

�� + ��ĝ���
�� + D�2 + �� + ��2 �

ĝ���
� + �

�1 − 
� + D

� + �
�2� , �42�

where the correction is of order O��+D�4. At the limit �
→0, D→0, after the change of variables �=�+�, the inte-
gral for determination of the rotation velocity � is

	
−�

�

d�
ĝ�� − ��

�
= 0. �43�

Evidently, it is the same condition as the one found for de-
termination of the frequency of the cluster of oscillators at
the onset of their synchronization �19�. It follows that the
critical synchronizing frequency �c equals the perturbation
rotation velocity � at the border of stability.

At the same limit ��→0,D→0�, the integrand in the first
integral in Eq. �41� behaves as a � function,

�� + D�ĝ���
�� + D�2 + �� + ��2 → 
��� + ��ĝ��� , �44�

and the critical coupling is Kc=2 / �
ĝ�−���. In this way the
values of the critical frequency �c and the critical coupling
Kc are verified with an independent procedure.

V. NUMERICAL EXPERIMENTS

In this section numerical simulations of the equations of
motion �5� are used for verification of the theoretical results.
The model was analytically studied for an infinite number of
oscillators. In the numerical simulation we have used a popu-
lation of N=5000 oscillators. As a numerical routine for in-
tegration of the differential equations of motion, a fourth-
order Runge-Kutta method was used and the integration step
was set at 0.01. The order parameter and synchronizing fre-
quency obtained in the simulation fluctuate over time around
the mean value, which settles after the transient process dies
out. The values presented in Fig. 1 were calculated by time
averaging over 1000 time units. The transient takes a much
longer time when the system is closer to the critical point, a
well-known phenomenon of critical slowing-down for phase
transitions �15�. For better accuracy of the estimated order
parameter a large population of units of the system is needed
and this represents another restrictive condition on the nu-
merical simulation. The synchronizing frequency is not de-
fined below the critical point, so it was not calculated for
such values of the coupling constant.

The distribution functions ĝ��� for the natural frequencies
were derived from the uniform distribution p�u�=1, 0	u
	1, according to the standard procedure �16�:

	
0

u

du p�u� = u = 	
−�

�

d�� ĝ���� = G��� . �45�

The theory presented in this work needs an infinite number
of oscillators for every frequency to exclude the influence of
drifting oscillators on the order parameter. However, the
simulations were performed with only one oscillator for each
of the N selected frequencies from the prescribed distribution
of natural frequencies ĝ����. The selection of frequencies
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was achieved by the above formula starting from a uniform
distribution with equidistant frequencies. Nevertheless, the
averages obtained for the order parameter agree very well
with the corresponding theoretical quantities.

VI. CONCLUSIONS

The Kuramoto mean-field model for synchronization of
oscillators has been studied for the case of an asymmetric
unimodal distribution of natural frequencies which should be
more common than the special cases requiring symmetry.
Introducing a phase balance condition �Eq. �18�� arising from
the main idea that the initial cluster of synchronized oscilla-
tors has a frequency which is different from the most prob-
able frequency for the distribution, a stationary solution to
the problem has been obtained for several examples. The
equations are transcendental and had to be solved numeri-
cally.

The numerical evidence obtained from their solutions is in
agreement with the analytically derived universal square-root
power law for the order parameter as a function of the cou-
pling strength near the critical point, independently of the
character of the maximum in the distribution function. First-
order phase transitions are found only for distributions with a
flat section when the seed of the synchronizing cluster is
born within the flat part. The singular behavior of the order
parameter depends on the shape of the adjacent tails of the
distribution function outside of the flat region creating the
initial synchronized set. Similarly to previous results �10�,
the first-order transition lacks metastability and hysteresis.
Again we find agreement between the numerically estimated
scaling laws near the critical coupling and those predicted
analytically for first-order transitions. The results were fur-
ther corroborated by numerical solutions of the equations of
motion for an ensemble of oscillators and also from the study
of the stability of the incoherent phase. The stability analysis
has shown that the imaginary part of the exponential growth
factor at the onset of instability of the incoherent state is
identical to the synchronization frequency at the critical
point.

The dependence of the synchronizing frequency on the
coupling strength may have some significance because it
provides a way for the system to adapt to the changes in the
environment if we assume that such changes are represented
by an effective coupling constant. Further exploration could
follow the recently suggested model �17� in which the effec-
tive interaction parameter is taken to be dependent on the
order parameter r as Krz, where z is a parameter. The shift of
the frequency of the coherent phase should be easily measur-
able in an experiment, and it will serve as an indication of
the asymmetry of the distribution of natural frequencies.

APPENDIX: DERIVATION OF THE
CHARACTERISTIC EXPONENTS FOR THE

FIRST-ORDER PHASE TRANSITIONS

The self-consistency equation �12� for the order parameter
r, expressed through the phase �, is

r = Kr	
−
/2


/2

d� cos2 �g�Kr sin �� , �A1�

where the integration is made only over the interval of stable
solutions of the phases ����
 /2. The first-order phase tran-
sition is due to the existence of a dominant flat top of the
distribution. When the synchronized cluster comprises only
oscillators from the flat section, the equation for r is inde-
pendent of the width of the cluster because the distribution is
constant in that part,

r = Krg0	
−
/2


/2

d� cos2 � , �A2�

where g0=g�0�, and the equation is consistent only for the
critical value of the coupling Kc=2 / �
g0�. The order param-
eter r varies according to the width of the cluster �see Eq.
�9��,

r = �/Kc, �A3�

and its critical value rc is attained when one of the ends of
the synchronized interval reaches one of the borders of the
plateau, in our case the left one, because the mean of the
distribution ĝ��� is negative. Then the half-width of the syn-
chronized cluster is �c=Kcrc.

When the coupling is little larger than critical, other os-
cillators join the cluster. From the right side of the cluster
they are from the plateau, and from the left side they belong
to the part of the distribution that differs from the constant
g0. Also, there is a shift of the locking frequency of the
cluster, −�0, in order to satisfy the phase balance equation
�18�. Numerical analysis shows that for distribution func-
tions with a flat top and negative mean, −�0 drifts toward
positive frequencies and becomes −��0−���. However, the
direction of the drift is irrelevant for the conclusions. In the
reference frame of the new synchronizing frequency, the left
border of the plateau attains a value −�b=−��c+���.

For couplings a little stronger than critical, near the left
boundary of the plateau the distribution has a general form

g��� = g0 − C�� + �b�mH�− � − �b� , �A4�

where C is a positive constant, m�0 is a parameter, and
H��� is the unit-step Heaviside function. Introducing the dis-
tribution �A4� in Eq. �A1�, the order parameter is given by

r = Krg0	
−
/2


/2

d� cos2 � − CKr	
−
/2

�0

d� cos2 ��Kr�m�sin �

+ sin �0�m, �A5�

where the phase �0 corresponds to the left border of the
plateau −�b in accordance with Eq. �9�. The phase �0 devi-
ates from −
 /2 as ��=�0+
 /2. With suitable changes of
variables and taking dominant terms in power series of the
trigonometric functions, it can be shown that the second in-
tegral in Eq. �A5� scales as ��2m+3 �10�. Taking K=Kc+�K
one obtains
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1 = �Kc + �K�

g0

2
− A��2m+3, �A6�

where A is a constant. Using the critical value of the cou-
pling, Kc=2 / �
g0�, the following scaling relationship is ob-
tained:

�K � ��2m+3. �A7�

The phase �0 corresponding to the left border of the pla-
teau −�b is defined with �see Eq. �9��

Kr sin �0 = − ��c + ��� . �A8�

Expanding near the critical point,

�K = K − Kc, �r = r − rc, �� = �0 + 
/2, �A9�

one can easily get another equation relating the variations �r,
�K, and ��,

0 = Kc�r + rc�K +
Kcrc

2
��2 − �� = Kc�r + B�K2/�2m+3� − �� ,

�A10�

where only the dominant term with �K dependence is kept
and B is a constant.

Now we will analyze the behavior of the frequency shift
�� near the critical point. At the critical point the phase
balance equation �18� is

0 = �̄ + �c + 	
−�

−�c

d� gc����2 − �c
2

− 	
�c

�

d� gc����2 − �c
2, �A11�

where we have used the distribution gc centered at the criti-
cal synchronizing frequency �c. Then for coupling stronger
than the critical, the phase balance equation expressed
through gc is

0 = �̄ + �c − �� + 	
−�

−�c−��

d� gc�� + ����2 − ��c + ���2

− 	
�c+��

�

d� gc�� + ����2 − ��c + ���2. �A12�

Let us denote by D− �D+� the differences between the first
�second� integrals in Eqs. �A11� and �A12�. The first differ-
ence is

D− = 	
−�

−�c−��

d� gc�� + ����2 − ��c + ���2

− 	
−�

−�c

d� gc����2 − �c
2. �A13�

Omitting the higher-order terms of �� and ��, it is reduced
to

D− = − 	
−�c−��

−�c

d� gc����2 − �c
2 + ��	

−�

−�c

d�
�gc

��
�2 − �c

2

− ��	
−�

−�c

d�
gc����c

�2 − �c
2

. �A14�

The third integral in D− is a constant, and integration by parts
shows that the same is true for the second integral. The first
integral is of the order ��3/2. Therefore,

D− = C�� + D�� , �A15�

where C and D are constants. In the same manner it can be
shown that D+=E��+F�� with E and F constants. Subtrac-
tion of Eqs. �A11� and �A12� gives

0 = D+ + D− − �� , �A16�

from where it is clear that

�� � �� . �A17�

Since �=Kr, near the critical point ��=Kc�r+rc�K and

�� � Kc�r + rc�K . �A18�

Finally using Eq. �A18� in Eq. �A10� and after neglecting
terms proportional to �K in comparison to �K2/�2m+3�,

�r � �K2/�2m+3�. �A19�

The value of the characteristic exponent 2 / �2m+3� is the
same as for the symmetric case �10�. In addition, from the
last two equations it follows that

�� � �K2/�2m+3�. �A20�
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